The Development of a Prototype Solution for Collecting Information on Cycling and Hiking Trail Users

Author:

Miguel Joaquim1,Mendonça Pedro1,Quelhas Agnelo23,Caldeira João M. L. P.14ORCID,Soares Vasco N. G. J.145ORCID

Affiliation:

1. Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, Portugal

2. Direção Geral da Educação/ERTE, Av. 24 de Julho n° 140–5.° Piso, 1399-025 Lisboa, Portugal

3. Federação Portuguesa de Ciclismo, Rua de Campolide, 237, 1070-030 Lisboa, Portugal

4. Instituto de Telecomunicações, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal

5. AMA—Agência Para a Modernização Administrativa, Rua de Santa Marta, n° 55, 1150-294 Lisboa, Portugal

Abstract

Hiking and cycling have gained popularity as ways of promoting well-being and physical activity. This has not gone unnoticed by Portuguese authorities, who have invested in infrastructure to support these activities and to boost sustainable and nature-based tourism. However, the lack of reliable data on the use of these infrastructures prevents us from recording attendance rates and the most frequent types of users. This information is important for the authorities responsible for managing, maintaining, promoting and using these infrastructures. In this sense, this study builds on a previous study by the same authors which identified computer vision as a suitable technology to identify and count different types of users of cycling and hiking routes. The performance tests carried out led to the conclusion that the YOLOv3-Tiny convolutional neural network has great potential for solving this problem. Based on this result, this paper describes the proposal and implementation of a prototype demonstrator. It is based on a Raspberry Pi 4 platform with YOLOv3-Tiny, which is responsible for detecting and classifying user types. An application available on users’ smartphones implements the concept of opportunistic networks, allowing information to be collected over time, in scenarios where there is no end-to-end connectivity. This aggregated information can then be consulted on an online platform. The prototype was subjected to validation and functional tests and proved to be a viable low-cost solution.

Funder

FCT/MCTES

EU funds

Publisher

MDPI AG

Reference78 articles.

1. Federação de Campismo e Montanhismo de Portugal (2006). Regulamento de Homologação De Percursos, Federação de Campismo e Montanhismo de Portugal.

2. (2023, December 09). Saos Sinalização. Available online: http://www.solasrotas.org/2008/09/sinalizao.html.

3. Pedestrianismo e Percursos Pedestres;Carvalho;Cad. De Geogr.,2009

4. (2024, January 16). Federação de Campismo e Montanhismo de Portugal Site Oficial Da FCMP. Available online: https://www.fcmportugal.com/.

5. (2023, December 09). Federação de Campismo e Montanhismo de Portugal Site Oficial Da FCMP-Percursos Pedestres. Available online: https://www.fcmportugal.com/percursos-pedestres/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3