NATCA YOLO-Based Small Object Detection for Aerial Images

Author:

Zhu Yicheng1,Ai Zhenhua1,Yan Jinqiang1,Li Silong1,Yang Guowei1,Yu Teng1

Affiliation:

1. College of Electronic Information, Qingdao University, Qingdao 266071, China

Abstract

The object detection model in UAV aerial image scenes faces challenges such as significant scale changes of certain objects and the presence of complex backgrounds. This paper aims to address the detection of small objects in aerial images using NATCA (neighborhood attention Transformer coordinate attention) YOLO. Specifically, the feature extraction network incorporates a neighborhood attention transformer (NAT) into the last layer to capture global context information and extract diverse features. Additionally, the feature fusion network (Neck) incorporates a coordinate attention (CA) module to capture channel information and longer-range positional information. Furthermore, the activation function in the original convolutional block is replaced with Meta-ACON. The NAT serves as the prediction layer in the new network, which is evaluated using the VisDrone2019-DET object detection dataset as a benchmark, and tested on the VisDrone2019-DET-test-dev dataset. To assess the performance of the NATCA YOLO model in detecting small objects in aerial images, other detection networks, such as Faster R-CNN, RetinaNet, and SSD, are employed for comparison on the test set. The results demonstrate that the NATCA YOLO detection achieves an average accuracy of 42%, which is a 2.9% improvement compared to the state-of-the-art detection network TPH-YOLOv5.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3