Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD

Author:

Xu Muzi1,Yu Qianqian1,Chen Shichao2ORCID,Lin Jianhui1

Affiliation:

1. College of Engineering, Beijing Forestry University, Beijing 100083, China

2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

In the industrial sector, accurate fault identification is paramount for ensuring both safety and economic efficiency throughout the production process. However, due to constraints imposed by actual working conditions, the motor state features collected are often limited in number and singular in nature. Consequently, extending and extracting these features pose significant challenges in fault diagnosis. To address this issue and strike a balance between model complexity and diagnostic accuracy, this paper introduces a novel motor fault diagnostic model termed FSCL (Fourier Singular Value Decomposition combined with Long and Short-Term Memory networks). The FSCL model integrates traditional signal analysis algorithms with deep learning techniques to automate feature extraction. This hybrid approach innovatively enhances fault detection by describing, extracting, encoding, and mapping features during offline training. Empirical evaluations against various state-of-the-art techniques such as Bayesian Optimization and Extreme Gradient Boosting Tree (BOA-XGBoost), Whale Optimization Algorithm and Support Vector Machine (WOA-SVM), Short-Time Fourier Transform and Convolutional Neural Networks (STFT-CNNs), and Variational Modal Decomposition-Multi Scale Fuzzy Entropy-Probabilistic Neural Network (VMD-MFE-PNN) demonstrate the superior performance of the FSCL model. Validation using the Case Western Reserve University dataset (CWRU) confirms the efficacy of the proposed technique, achieving an impressive accuracy of 99.32%. Moreover, the model exhibits robustness against noise, maintaining an average precision of 98.88% and demonstrating recall and F1 scores ranging from 99.00% to 99.89%. Even under conditions of severe noise interference, the FSCL model consistently achieves high accuracy in recognizing the motor’s operational state. This study underscores the FSCL model as a promising approach for enhancing motor fault diagnosis in industrial settings, leveraging the synergistic benefits of traditional signal analysis and deep learning methodologies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3