Bend-Net: Bending Loss Regularized Multitask Learning Network for Nuclei Segmentation in Histopathology Images

Author:

Wang Haotian1ORCID,Vakanski Aleksandar2ORCID,Shi Changfa3ORCID,Xian Min2ORCID

Affiliation:

1. Castell Health Inc., Salt Lake City, UT 84111, USA

2. Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA

3. School of Intelligent Engineering and Intelligent Manufacturing, Hunan University of Technology and Business, Changsha 410205, China

Abstract

Separating overlapped nuclei is a significant challenge in histopathology image analysis. Recently published approaches have achieved promising overall performance on nuclei segmentation; however, their performance on separating overlapped nuclei is limited. To address this issue, we propose a novel multitask learning network with a bending loss regularizer to separate overlapped nuclei accurately. The newly proposed multitask learning architecture enhances generalization by learning shared representation from the following three tasks: instance segmentation, nuclei distance map prediction, and overlapped nuclei distance map prediction. The proposed bending loss defines high penalties to concave contour points with large curvatures, and small penalties are applied to convex contour points with small curvatures. Minimizing the bending loss avoids generating contours that encompass multiple nuclei. In addition, two new quantitative metrics, the Aggregated Jaccard Index of overlapped nuclei (AJIO) and the accuracy of overlapped nuclei (ACCO), have been designed to evaluate overlapped nuclei segmentation. We validate the proposed approach on the CoNSeP and MoNuSegv1 data sets using the following seven quantitative metrics: Aggregate Jaccard Index, Dice, Segmentation Quality, Recognition Quality, Panoptic Quality, AJIO, and ACCO. Extensive experiments demonstrate that the proposed Bend-Net outperforms eight state-of-the-art approaches.

Funder

Institute for Modeling Collaboration and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3