A Deep Learning-Based Electromagnetic Signal for Earthquake Magnitude Prediction

Author:

Bao ZhenyuORCID,Zhao Jingyu,Huang Pu,Yong Shanshan,Wang Xin’an

Abstract

The influence of earthquake disasters on human social life is positively related to the magnitude and intensity of the earthquake, and effectively avoiding casualties and property losses can be attributed to the accurate prediction of earthquakes. In this study, an electromagnetic sensor is investigated to assess earthquakes in advance by collecting earthquake signals. At present, the mainstream earthquake magnitude prediction comprises two methods. On the one hand, most geophysicists or data analysis experts extract a series of basic features from earthquake precursor signals for seismic classification. On the other hand, the obtained data related to earth activities by seismograph or space satellite are directly used in classification networks. This article proposes a CNN and designs a 3D feature-map which can be used to solve the problem of earthquake magnitude classification by combining the advantages of shallow features and high-dimensional information. In addition, noise simulation technology and SMOTE oversampling technology are applied to overcome the problem of seismic data imbalance. The signals collected by electromagnetic sensors are used to evaluate the method proposed in this article. The results show that the method proposed in this paper can classify earthquake magnitudes well.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Recent Efforts in Earthquake Prediction (1990–2007)

2. Physical properties of the variations of the electric field of the earth preceding earthquakes, I

3. Observations of earthquakes registered with the microseismograph constructed recently;Ishimoto;Bull. Earthq. Res. Inst. Univ. Tokyo,1936

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3