Fully Transparent and Sensitivity-Programmable Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor-Based Biosensor Platforms with Resistive Switching Memories

Author:

Jeon Hyeong-Un,Cho Won-JuORCID

Abstract

This paper presents a fully transparent and sensitivity-programmable biosensor based on an amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with embedded resistive switching memories (ReRAMs). The sensor comprises a control gate (CG) and a sensing gate (SG), each with a resistive switching (RS) memory connected, and a floating gate (FG) that modulates the channel conductance of the a-IGZO TFT. The resistive coupling between the RS memories connected to the CG and SG produces sensitivity properties that considerably exceed the limit of conventional ion-sensitive field-effect transistor (ISFET)-based sensors. The resistances of the embedded RS memories were determined by applying a voltage to the CG–FG and SG–FG structures independently and adjusting the compliance current. Sensors constructed using RS memories with different resistance ratios yielded a pH sensitivity of 50.5 mV/pH (RCG:RSG = 1:1), 105.2 mV/pH (RCG:RSG = 2:1), and 161.9 mV/pH (RCG:RSG = 3:1). Moreover, when the RCG:RSG = 3:1, the hysteresis voltage width (VH) and drift rate were 54.4 mV and 32.9 mV/h, respectively. As the increases in VH and drift rate are lower than the amplified sensitivity, the sensor performs capably. The proposed device is viable as a versatile sensing device capable of detecting various substances, such as cells, antigens, DNA, and gases.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3