Abstract
This paper presents a fully transparent and sensitivity-programmable biosensor based on an amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with embedded resistive switching memories (ReRAMs). The sensor comprises a control gate (CG) and a sensing gate (SG), each with a resistive switching (RS) memory connected, and a floating gate (FG) that modulates the channel conductance of the a-IGZO TFT. The resistive coupling between the RS memories connected to the CG and SG produces sensitivity properties that considerably exceed the limit of conventional ion-sensitive field-effect transistor (ISFET)-based sensors. The resistances of the embedded RS memories were determined by applying a voltage to the CG–FG and SG–FG structures independently and adjusting the compliance current. Sensors constructed using RS memories with different resistance ratios yielded a pH sensitivity of 50.5 mV/pH (RCG:RSG = 1:1), 105.2 mV/pH (RCG:RSG = 2:1), and 161.9 mV/pH (RCG:RSG = 3:1). Moreover, when the RCG:RSG = 3:1, the hysteresis voltage width (VH) and drift rate were 54.4 mV and 32.9 mV/h, respectively. As the increases in VH and drift rate are lower than the amplified sensitivity, the sensor performs capably. The proposed device is viable as a versatile sensing device capable of detecting various substances, such as cells, antigens, DNA, and gases.
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献