Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris

Author:

Ding Yigao12,Li Zhenwei13ORCID,Liu Chengzhi13,Kang Zhe1,Sun Mingguo1,Sun Jiannan12,Chen Long1

Affiliation:

1. Changchun Observatory, National Astronomical Observatories Chinese Academy of Sciences, Changchun 130117, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Space Object and Debris Observation, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

Atmospheric drag is an important influencing factor in precise orbit determination and the prediction of low-orbit space debris. It has received widespread attention. Currently, calculating atmospheric drag mainly relies on different atmospheric density models. This experiment was designed to explore the impact of different atmospheric density models on the orbit prediction of space debris. In the experiment, satellite laser ranging data published by the ILRS (International Laser Ranging Service) were used as the basis for the precise orbit determination for space debris. The prediction error of space debris orbits at different orbital heights using different atmospheric density models was used as a criterion to evaluate the impact of atmospheric density models on the determination of space-target orbits. Eight atmospheric density models, DTM78, DTM94, DTM2000, J71, RJ71, JB2006, MSIS86, and NRLMSISE00, were compared in the experiment. The experimental results indicated that the DTM2000 atmospheric density model is best for determining and predicting the orbits of LEO (low-Earth-orbit) targets.

Funder

Natural Science Foundation of China

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3