Abstract
Infrared image simulation is challenging because it is complex to model. To estimate the corresponding infrared image directly from the visible light image, we propose a three-level refined light-weight generative adversarial network with cascaded guidance (V2T-GAN), which can improve the accuracy of the infrared simulation image. V2T-GAN is guided by cascading auxiliary tasks and auxiliary information: the first-level adversarial network uses semantic segmentation as an auxiliary task, focusing on the structural information of the infrared image; the second-level adversarial network uses the grayscale inverted visible image as the auxiliary task to supplement the texture details of the infrared image; the third-level network obtains a sharp and accurate edge by adding auxiliary information of the edge image and a displacement network. Experiments on the public dataset Multispectral Pedestrian Dataset demonstrate that the structure and texture features of the infrared simulation image obtained by V2T-GAN are correct, and outperform the state-of-the-art methods in objective metrics and subjective visualization effects.
Funder
National Natural Science Foundation of China
National Key Research and Development Program Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献