Research on Safety Interlock System Design and Control Experiment of Combined Support and Anchor Equipment

Author:

Wang PengyuORCID,Su Guoyong,Yang Wenlong,Jing Peng

Abstract

In view of the risk of collision with humans or equipment arising from a lack of protection in the operation process of combined support and anchor equipment on the heading face, this paper designs a safety interlock system for combined support and anchor equipment. Firstly, a mathematical model of hydraulic power system control and a valve control system based on feedforward–feedback optimization were established according to the power demand of the combined support and anchor equipment. Secondly, according to the reliability indexes of the safety interlock system, corresponding sensor, logic control and execution modules were designed. Ultrasonic sensor groups were arranged at the key positions of the combined support and anchor equipment to capture the position information in real time when the equipment was moving. Thus, the pump-valve hydraulic system was controlled through closed-loop feedback. The experimental results show that the safety interlock system of the combined support and anchor equipment can adjust the revolving speed of the permanent magnet synchronous motor (PMSM) in real time according to the distance from the obstacle, so as to control the pump outlet flow, and then perform interlocking safety control of the hydraulic cylinder’s movement speed. The system can effectively prevent damage to the surrounding equipment or personnel arising from equipment malfunction.

Funder

Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference16 articles.

1. Current status and trend analysis of readway driving technology and equipment in coal mine;Wang;Coal Sci. Technol.,2020

2. Theory and technology of efficient roadway advance with driving and bolting integration;Wang;J. China Coal Soc.,2020

3. Research and engineering progress of intelligent coal mine technical system in early stages;Wang;Coal Sci. Technol.,2020

4. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry;Liu;J. China Coal Soc.,2021

5. Analysis and countermeasures of ten ‘pain points’ of intelligent coal mine;Wang;Ind. Mine Autom.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3