Automatic Ergonomic Risk Assessment Using a Variational Deep Network Architecture

Author:

Chatzis TheocharisORCID,Konstantinidis DimitriosORCID,Dimitropoulos KosmasORCID

Abstract

Ergonomic risk assessment is vital for identifying work-related human postures that can be detrimental to the health of a worker. Traditionally, ergonomic risks are reported by human experts through time-consuming and error-prone procedures; however, automatic algorithmic methods have recently started to emerge. To further facilitate the automatic ergonomic risk assessment, this paper proposes a novel variational deep learning architecture to estimate the ergonomic risk of any work-related task by utilizing the Rapid Entire Body Assessment (REBA) framework. The proposed method relies on the processing of RGB images and the extraction of 3D skeletal information that is then fed to a novel deep network for accurate and robust estimation of REBA scores for both individual body parts and the entire body. Through a variational approach, the proposed method processes the skeletal information to construct a descriptive skeletal latent space that can accurately model human postures. Moreover, the proposed method distills knowledge from ground truth ergonomic risk scores and leverages it to further enhance the discrimination ability of the skeletal latent space, leading to improved accuracy. Experiments on two well-known datasets (i.e., University of Washington Indoor Object Manipulation (UW-IOM) and Technische Universität München (TUM) Kitchen) validate the ability of the proposed method to achieve accurate results, overcoming current state-of-the-art methods.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3