Application of Machine Learning Approaches to Predict the Strength Property of Geopolymer Concrete

Author:

Cao RongchuanORCID,Fang Zheng,Jin Man,Shang Yu

Abstract

Geopolymer concrete (GPC) based on fly ash (FA) is being studied as a possible alternative solution with a lower environmental impact than Portland cement mixtures. However, the accuracy of the strength prediction still needs to be improved. This study was based on the investigation of various types of machine learning (ML) approaches to predict the compressive strength (C-S) of GPC. The support vector machine (SVM), multilayer perceptron (MLP), and XGBoost (XGB) techniques have been employed to check the difference between the experimental and predicted results of the C-S for the GPC. The coefficient of determination (R2) was used to measure how accurate the results were, which usually ranged from 0 to 1. The results show that the XGB was a more accurate model, indicating an R2 value of 0.98, as opposed to SVM (0.91) and MLP (0.88). The statistical checks and k-fold cross-validation (CV) also confirm the high precision level of the XGB model. The lesser values of the errors for the XGB approach, such as mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE), were noted as 1.49 MPa, 3.16 MPa, and 1.78 MPa, respectively. These lesser values of the errors also indicate the high precision of the XGB model. Moreover, the sensitivity analysis was also conducted to evaluate the parameter’s contribution towards the anticipation of C-S of GPC. The use of ML techniques for the prediction of material properties will not only reduce the effort of experimental work in the laboratory but also minimize the cast and time for the researchers.

Publisher

MDPI AG

Subject

General Materials Science

Reference91 articles.

1. Geopolymers and related alkali-activated materials;Provis;Annu. Rev. Mater. Res.,2014

2. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review;Yang;Case Stud. Constr. Mater.,2022

3. Eco-friendly geopolymer prepared from solid wastes: A critical review;Ren;Chemosphere,2020

4. State of the Art on the Application of Waste Materials in Geopolymer Concrete;Podolsky;Case Stud. Constr. Mater.,2021

5. Recycling waste materials in geopolymer concrete;Mohajerani;Clean Technol. Environ. Policy,2019

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3