Band Structure Studies of the R5Rh6Sn18 (R = Sc, Y, Lu) Quasiskutteridite Superconductors

Author:

Deniszczyk JózefORCID,Ślebarski AndrzejORCID

Abstract

We report on X-ray photoelectron spectroscopy and ab initio electronic structure investigations of the skutterudite-related R5Rh6Sn18 superconductors, where R = Sc, Y, and Lu. These compounds crystallise with a tetragonal structure (space group I41/acd) and are characterised by a deficiency of R atoms in their formula unit (R5−δRh6Sn18, δ≪1). Recently, we documented that the vacancies δ and atomic local defects (often induced by doping) are a reason for the enhancement in the superconducting transition temperature Tc of these materials, as well as metallic (δ=0) or semimetallic (δ≠0) behaviours in their normal state. Our band structure calculations show the pseudogap at a binding energy of −0.3 eV for the stoichiometric compounds, which can be easily moved towards the Fermi level by vacancies δ. As a result, dychotomic nature in electric transport of R5Rh6Sn18 (metallic or semimetallic resistivity) depends on δ, which has not been interpreted before. We have shown that the densities of states are very similar for various R5Rh6Sn18 compounds, and they practically do not depend on the metal R, while they are determined by the Rh d-and Sn s- and p-electron states. The band structure calculations for Sc5Rh6Sn18 have not been reported yet. We also found that the electronic specific heat coefficients γ0 for the stoichiometric samples were always larger with respect to the γ0 of the respective samples with vacancies at the R sites, which correlates with the results of ab initio calculations.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3