Biomineralisation to Increase Earth Infrastructure Resilience

Author:

Bras AnaORCID,Mohammed Hazha,Romano AbbieORCID,Nakouti Ismini

Abstract

The vulnerability of buildings and structures to rain and flooding due to a lack of adaptive capacity is an issue all over the world. Exploring the bio-resources availability and engineering performance is crucial to increase infrastructure’s resilience. The current study analyses earth-based mortars using mineral precipitation as a biostabiliser (bio) and compares their performance with cement-based mortars. Cultures of S. oneidensis with a concentration of 2.3 × 108 cfu/mL were used to prepare earth-based and cement-based mortars with a ratio of 6% of binder. Microstructure analyses through SEM/EDS, water absorption, moisture buffering, mechanical strength, and porosity are discussed. The biostabiliser decreases water absorption in tidal-splash and saturated environments for earth and cement mortars due to calcium carbonate precipitation. The biostabiliser can prevent water migration more effectively for the cement-based (60% reduction) than for the earth-based mortars (up to 10% reduction) in the first 1 h of contact with water. In an adsorption/desorption environment, the conditions favour desorption in cem+bio, and it seems that the biostabiliser precipitation facilitates the release of the chemicals into the mobile phase. The precipitation in the earth+bio mortar porous media conditions favours the adsorption of water molecules, making the molecule adhere to the stationary phase and be separated from the other sample chemicals. The SEM/EDS performed for the mortars confirms the calcium carbonate precipitation and shows that there is a decrease in the quantity of Si and K if the biostabiliser is used in cement and earth-mortars. This decrease, associated with the ability of S. oneidensis to leach silica, is more impressive for earth+bio, which might be associated with a dissolution of silicate structures due to the presence of more water. For the tested earth-based mortars, there was an increase of 10% for compressive and flexural strength if the biostabiliser was added. For the cement-based mortars, the strength increase was almost double that of the plain one due to the clay surface negative charge in the earth-based compositions.

Funder

Royal Academy of Engineering

ICE Fund

Publisher

MDPI AG

Subject

General Materials Science

Reference48 articles.

1. The potential and current status of earthen material for low-cost housing in rural India

2. UK’s Third Climate Change Risk Assessment (CCRA3), UK Climate Change Risk Assessment 2021: Independent Assessment of UK Climate Risk 2021https://www.theccc.org.uk/publication/independent-assessment-of-uk-climate-risk/

3. Evaluation for Agenda 2030: Providing Evidence on Progress and Sustainability,2017

4. Natural additives and biopolymers for raw earth construction stabilization – a review

5. Earth as construction material in the circular economy context: practitioner perspectives on barriers to overcome

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3