Ways to Improve the Efficiency of Devices for Freezing of Small Products

Author:

Bazaluk OlegORCID,Struchaiev Nikolai,Halko Serhii,Miroshnyk OleksandrORCID,Bondarenko Larysa,Karaiev Oleksandr,Nitsenko VitaliiORCID

Abstract

It has been established that one of the main problems in the technology of the production of loose food products is the sticking of vegetables or fruits into one block. It has been proven that one of the steps to solve this problem is the use of berries, fruits, or vegetables during freezing in the form of a fluidized bed in air. However, a significant part of the energy is spent precisely when creating a fluidized bed with the help of fans. By improving the separation efficiency of small products in the freezing process, it would be possible to significantly reduce the energy costs of freezing worldwide. The purpose of this work was to determine ways to increase the efficiency of devices for freezing small products. The goal was achieved through the use of a modified method for studying energy costs, taking into account energy costs for fluidization and mechanical shaking. For comparison, two options for the efficient separation of small products during freezing were considered. Namely the separation of small products in the process of freezing with the help of fluidization, and with the help of mechanical shaking. Comparison of these variants showed that it was advisable to separate small products during freezing by mechanical shaking. It was established that their energy parameters, as well as fractional properties, are significantly different. The product temperature was determined for the case of a constant temperature of the cooling air and equipment elements. The results obtained confirmed the possibility of achieving significant energy savings of 1.5–3.5 times by using the mechanized device we proposed for freezing fruits and vegetables. The main result of this paper is the proposed method, or algorithm, for calculating energy costs for fluidization and mechanical shaking, which could be used in the design of devices for the freezing of small products; as well as the obtained data confirming the correspondence of the theoretical calculations to reality. The novelty of the research consists in presenting a model or algorithm for calculating the energy costs for fluidization and mechanical shaking. The importance of the results of the work lies in the possibility of using this technique to assess the energy effectiveness of devices for the freezing of small products.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3