High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)

Author:

Cheng RuyunORCID,Yao Li,Yan Xinyang,Zhang Bingda,Jin Zhao

Abstract

With the expansion of system scale and the reduction in simulation step size, the design of a power system real-time simulation platform faces many difficulties. The interactive operation of real-time simulation presents the characteristics of phased and centralized. This paper proposes selecting the appropriate simulation method for each sub-network according to the system operation requirements, and the sub-network simulation method can be changed with the change in system operation requirements in the simulation process. In order to change the sub-network simulation method in the simulation process, a high flexibility hybrid architecture real-time simulation platform based on FPGA was designed. The main body of the architecture runs in the high control mode of instruction flow and uses instruction flexibility to realize the requirement of changing methods. The algorithm modularity architecture is used as an auxiliary architecture to reduce the instruction cost and increase the computing power. Finally, the hybrid architecture real-time simulation platform was implemented in the Xilinx VC709 board (Xilinx corporation, San Jose, CA, USA), and the verification results show that under the same system scale, the hybrid architecture simulation platform combined with simulation method changing realizes shorter simulation step and complex interactive operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Regional differences on CO2 emission efficiency in metallurgical industry of China;Lin;Energy Policy,2018

2. Assessment of Power System Low-carbon Transition Pathways Based on China’s Energy Revolution Strategy;Wen;Energy Procedia,2018

3. Research on Electromechanical-Electromagnetic Transient Hybrid Simulation of AC/DC Hybrid System;Liu;Power Syst. Prot. Control,2019

4. Current Situation and Challenges of Simulation Technology for AC/DC Hybrid Power Grid;Li;Electr. Power Constr.,2015

5. An Equivalent Circuit Method for Modelling and Simulation of Modular Multilevel Converters in Real-Time HIL Test Bench;Li;IEEE Trans. Power Deliv.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Architectures and Trade‐Offs for FPGA‐Based Real‐Time Systems;Explainable Machine Learning Models and Architectures;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3