Author:
Yan Xiaoxiao,Wu Baiheng,Wu Qinglin,Chen Li,Ye Fangfu,Chen Dong
Abstract
Solar vapor generation is emerging as one of the most important sustainable techniques for harvesting clean water using abundant and green solar energy. The rational design of solar evaporators to realize high solar evaporation performances has become a great challenge. Here, a porous solar evaporator with integrative optimization of photothermal convention, water transport and thermal management is developed using attractive Pickering emulsions gels (APEG) as templated and followed by interfacial engineering on a molecular scale. The APEG-templated porous evaporators (APEG-TPEs) are intrinsically thermal insulation materials with a thermal conductivity = 0.039 W·m−1·K−1. After hydrolysis, t-butyl groups on the inner-surface are transformed to carboxylic acid groups, making the inner-surface hydrophilic and facilitating water transport through the inter-connected pores. The introduction of polypyrrole layer endows the porous materials with a high light absorption of ~97%, which could effectively convert solar irradiation to heat. Due to the versatility of the APEG systems, the composition, compressive modulus, porosity of APEG-TPEs could be well controlled and a high solar evaporation efficiency of 69% with an evaporation rate of 1.1 kg·m−2·h−1 is achieved under simulated solar irradiation. The interface-engineered APEG-TPEs are promising in clean water harvesting and could inspire the future development of solar evaporators.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献