Interfacial Engineering of Attractive Pickering Emulsion Gel-Templated Porous Materials for Enhanced Solar Vapor Generation

Author:

Yan Xiaoxiao,Wu Baiheng,Wu Qinglin,Chen Li,Ye Fangfu,Chen Dong

Abstract

Solar vapor generation is emerging as one of the most important sustainable techniques for harvesting clean water using abundant and green solar energy. The rational design of solar evaporators to realize high solar evaporation performances has become a great challenge. Here, a porous solar evaporator with integrative optimization of photothermal convention, water transport and thermal management is developed using attractive Pickering emulsions gels (APEG) as templated and followed by interfacial engineering on a molecular scale. The APEG-templated porous evaporators (APEG-TPEs) are intrinsically thermal insulation materials with a thermal conductivity = 0.039 W·m−1·K−1. After hydrolysis, t-butyl groups on the inner-surface are transformed to carboxylic acid groups, making the inner-surface hydrophilic and facilitating water transport through the inter-connected pores. The introduction of polypyrrole layer endows the porous materials with a high light absorption of ~97%, which could effectively convert solar irradiation to heat. Due to the versatility of the APEG systems, the composition, compressive modulus, porosity of APEG-TPEs could be well controlled and a high solar evaporation efficiency of 69% with an evaporation rate of 1.1 kg·m−2·h−1 is achieved under simulated solar irradiation. The interface-engineered APEG-TPEs are promising in clean water harvesting and could inspire the future development of solar evaporators.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3