Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings

Author:

Samaranayake PremaratneORCID,Maier Chelsea,Chavan Sachin,Liang Weiguang,Chen Zhong-Hua,Tissue David T.ORCID,Lan Yi-ChenORCID

Abstract

Energy management in protected cropping is critical due to the high cost of energy use in high-tech greenhouse facilities. The main purpose of this research was to investigate the optimal strategy to reduce cooling energy consumption, by regulating the settings (opening/closing) of either vents or curtains during the day, at the protected cropping facility at Western Sydney University. We measured daily changes in air temperature and energy consumption under four treatments (open/closed combinations of vents and shade screens) and developed an optimal cooling strategy for energy management using multi-temperature acquisition points at different heights within a greenhouse compartment. The optimal treatment (vents open/curtains closed) reduced energy load at the rooftop, thereby maintaining a desirable plant canopy temperature profile, and reducing cooling energy. Daily energy consumption was lowest for vents open/curtains closed (70.5 kWh) and highest for vents closed/curtains open (121 kWh). It was also found that delaying the operation of opening and closing of vents and curtains until the plant canopy temperature reached 25 °C reduced cooling energy consumption and decreased heating energy consumption in the morning (e.g., 08:00 to 10:00). The estimated savings of 1.83 kWh per 1 °C cooling between the optimal (vents open/curtains closed) and least optimal (vents closed/curtains open) conditions had the potential for significant energy savings at 494 kWh per °C over a crop cycle of nine months in warm weather conditions. However, selection of the optimal cooling strategy utilising control of vents and curtains must also account for the impact from other greenhouse environmental factors, including light, humidity, and CO2 concentration, which may be crop specific.

Funder

Horticulture Innovation Australia projects

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3