Abstract
In pressurized irrigation networks, energy reaches around 40% of the total water costs. Pump-as-Turbines (PATs) are a cost-effective technology for energy recovery, although they can present low efficiencies when operating outside of the best efficiency point (BEP). Flow fluctuations are very important in on-demand irrigation networks. This makes flow prediction and the selection of the optimal PAT more complex. In this research, an advanced statistical methodology was developed, which predicts the monthly flow fluctuations and the duration of each flow value. This was used to estimate the monthly time for which a PAT would work under BEP conditions and the time for which it would work with lower efficiencies. In addition, the optimal PAT power for each Excess Pressure Point (EPP) studied was determined following the strategy of minimising the PAT investment payback period (PP). The methodology was tested in Sector VII of the right bank of the Bembézar River (BMD), in Southern Spain. Five potential sites for PAT installation were found. The results showed a potential energy recovery of 93.9 MWh and an annual energy index per irrigated surface area of 0.10 MWh year−1 ha−1. Renewable energy will become increasingly important in the agriculture sector, to reduce both water costs and the contribution to climate change. PATs represent an attractive technology that can help achieve such goals.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献