Violence Detection Using Spatiotemporal Features with 3D Convolutional Neural Network

Author:

Ullah Fath U Min,Ullah AminORCID,Muhammad Khan,Haq Ijaz Ul,Baik Sung Wook

Abstract

The worldwide utilization of surveillance cameras in smart cities has enabled researchers to analyze a gigantic volume of data to ensure automatic monitoring. An enhanced security system in smart cities, schools, hospitals, and other surveillance domains is mandatory for the detection of violent or abnormal activities to avoid any casualties which could cause social, economic, and ecological damages. Automatic detection of violence for quick actions is very significant and can efficiently assist the concerned departments. In this paper, we propose a triple-staged end-to-end deep learning violence detection framework. First, persons are detected in the surveillance video stream using a light-weight convolutional neural network (CNN) model to reduce and overcome the voluminous processing of useless frames. Second, a sequence of 16 frames with detected persons is passed to 3D CNN, where the spatiotemporal features of these sequences are extracted and fed to the Softmax classifier. Furthermore, we optimized the 3D CNN model using an open visual inference and neural networks optimization toolkit developed by Intel, which converts the trained model into intermediate representation and adjusts it for optimal execution at the end platform for the final prediction of violent activity. After detection of a violent activity, an alert is transmitted to the nearest police station or security department to take prompt preventive actions. We found that our proposed method outperforms the existing state-of-the-art methods for different benchmark datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3