Longitudinal Mixing in Flows with Submerged Rigid Aquatic Canopies

Author:

Nipuni Odara Merenchi Galappaththige1ORCID,Pearson Jonathan1ORCID

Affiliation:

1. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

The presence of dense submerged vegetation alters mixing characteristics in open channel flows as they cause differential velocities inside and above canopies. The prediction models for longitudinal mixing in the presence of submerged canopies often use the drag coefficient to represent the canopy, which limits the usability of the models when the canopy properties are not fully understood. Here, attempts were made to present a methodology which can be used for deriving the coefficient of longitudinal dispersion in the presence of submerged vegetation based on velocity measurements, using a mixing length approach to model turbulence. An experimental study was conducted in a large-scale laboratory facility to investigate the longitudinal dispersion characteristics in open channel flow with submerged aquatic vegetation canopies. Detailed velocity and solute tracer measurements were undertaken for a representative range of flow velocities. The velocity measurements were used for deriving turbulent shear stress, mixing length, and diffusivity using established theoretical and empirical relationships to derive the longitudinal dispersion. The longitudinal dispersion measured in two locations in the water column for the two canopy submergences was discussed based on the amount of vertical mixing and differential advection. The canopy with a smaller stem length (i.e., higher submergence ratio) has a higher vertical diffusivity, resulting in increased vertical mixing in the water column. The canopy with the higher stem length (i.e., lower submergence ratio) consists of minimal vertical diffusivity, causing the longitudinal dispersion measured above the canopy to be significantly high, even though the longitudinal dispersion measured inside the canopy is much lower. The mathematical model which was adapted for calculating the coefficient of longitudinal dispersion and the tracer results show good agreement, indicating that the N-zone model can accurately predict the longitudinal dispersion in submerged aquatic canopies when used with the presented methodology.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference55 articles.

1. Green, E.P., and Short, F. (2003). World Atlas of Seagrasses, University of California Press.

2. Aquatic macrophytes and the oxygen balance of running water;Westlake;SIL Proc. 1922–2010,1961

3. Effects of submersed macrophytes on ecosystem processes;Carpenter;Aquat. Bot.,1986

4. Influence of Seagrasses on Water Quality in Shallow Regions of the Lower Chesapeake Bay;Moore;J. Coast. Res.,2004

5. Kadlec, R.H., and Wallace, S.D. (2008). Treatment Wetlands, CRC Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3