Multithreading-Based Algorithm for High-Performance Tchebichef Polynomials with Higher Orders

Author:

Al-sudani Ahlam Hanoon1ORCID,Mahmmod Basheera M.1ORCID,Sabir Firas A.1,Abdulhussain Sadiq H.1ORCID,Alsabah Muntadher2ORCID,Flayyih Wameedh Nazar1ORCID

Affiliation:

1. Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad 10071, Iraq

2. Medical Technical College, Al-Farahidi University, Baghdad 10071, Iraq

Abstract

Tchebichef polynomials (TPs) play a crucial role in various fields of mathematics and applied sciences, including numerical analysis, image and signal processing, and computer vision. This is due to the unique properties of the TPs and their remarkable performance. Nowadays, the demand for high-quality images (2D signals) is increasing and is expected to continue growing. The processing of these signals requires the generation of accurate and fast polynomials. The existing algorithms generate the TPs sequentially, and this is considered as computationally costly for high-order and larger-sized polynomials. To this end, we present a new efficient solution to overcome the limitation of sequential algorithms. The presented algorithm uses the parallel processing paradigm to leverage the computation cost. This is performed by utilizing the multicore and multithreading features of a CPU. The implementation of multithreaded algorithms for computing TP coefficients segments the computations into sub-tasks. These sub-tasks are executed concurrently on several threads across the available cores. The performance of the multithreaded algorithm is evaluated on various TP sizes, which demonstrates a significant improvement in computation time. Furthermore, a selection for the appropriate number of threads for the proposed algorithm is introduced. The results reveal that the proposed algorithm enhances the computation performance to provide a quick, steady, and accurate computation of the TP coefficients, making it a practical solution for different applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3