Multi-Source Data-Driven Local-Global Dynamic Multi-Graph Convolutional Network for Bike-Sharing Demands Prediction

Author:

Chen Juan12ORCID,Huang Rui1

Affiliation:

1. SHU-UTS SILC Business School, Shanghai University, Shanghai 201899, China

2. Smart City Research Institute, Shanghai University, Shanghai 201899, China

Abstract

The prediction of bike-sharing demand plays a pivotal role in the optimization of intelligent transportation systems, particularly amidst the COVID-19 pandemic, which has significantly altered travel behaviors and demand dynamics. In this study, we examine various spatiotemporal influencing factors associated with bike-sharing and propose the Local-Global Dynamic Multi-Graph Convolutional Network (LGDMGCN) model, driven by multi-source data, for multi-step prediction of station-level bike-sharing demand. In the temporal dimension, we dynamically model temporal dependencies by incorporating multiple sources of time semantic features such as confirmed COVID-19 cases, weather conditions, and holidays. Additionally, we integrate a time attention mechanism to better capture variations over time. In the spatial dimension, we consider factors related to the addition or removal of stations and utilize spatial semantic features, such as urban points of interest and station locations, to construct dynamic multi-graphs. The model utilizes a local-global structure to capture spatial dependencies among individual bike-sharing stations and all stations collectively. Experimental results, obtained through comparisons with baseline models on the same dataset and conducting ablation studies, demonstrate the feasibility and effectiveness of the proposed model in predicting bike-sharing demand.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3