Energy-Oriented Hybrid Cooperative Adaptive Cruise Control for Fuel Cell Electric Vehicle Platoons

Author:

Li Shibo12ORCID,Chu Liang12,Fu Pengyu3,Pu Shilin4,Wang Yilin12,Li Jinwei12,Guo Zhiqi12

Affiliation:

1. College of Automotive Engineering, Jilin University, Changchun 130022, China

2. National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China

3. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK

4. GAC R&D Center, Guangzhou 511434, China

Abstract

Given the complex powertrain of fuel cell electric vehicles (FCEVs) and diversified vehicle platooning synergy constraints, a control strategy that simultaneously considers inter-vehicle synergy control and energy economy is one of the key technologies to improve transportation efficiency and release the energy-saving potential of platooning vehicles. In this paper, an energy-oriented hybrid cooperative adaptive cruise control (eHCACC) strategy is proposed for an FCEV platoon, aiming to enhance energy-saving potential while ensuring stable car-following performance. The eHCACC employs a hybrid cooperative control architecture, consisting of a top-level centralized controller (TCC) and bottom-level distributed controllers (BDCs). The TCC integrates an eco-driving CACC (eCACC) strategy based on the minimum principle and random forest, which generates optimal reference velocity datasets by aligning the comprehensive control objectives of the platoon and addressing the car-following performance and economic efficiency of the platoon. Concurrently, to further unleash energy-saving potential, the BDCs utilize the equivalent consumption minimization strategy (ECMS) to determine optimal powertrain control inputs by combining the reference datasets with detailed optimization information and system states of the powertrain components. A series of simulation evaluations highlight the improved car-following stability and energy efficiency of the FCEV platoon.

Funder

State Scholarship Funding of China Scholarship Council

Changsha Automotive Innovation Research Institute Innovation Project named Research on Intelligent Trip Planning System of Pure Electric Vehicles Based on Big Data

Science and Technology Planning Project in Yibin City

Science and Technology Planning Project in Tianjin City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3