Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain?

Author:

Burjawi Tamer1ORCID,Chai Rifai2ORCID,Arrowsmith Matthew2ORCID,Pranata Adrian3ORCID

Affiliation:

1. Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, VIC 3122, Australia

2. Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia

3. School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3082, Australia

Abstract

Low back pain (LBP) is a major contributor to lifting-related disabilities. To minimize the risk of back pain, emerging technologies known as lifting exoskeletons were designed to optimize lifting movements. However, it is currently unknown whether a minimally supportive exoskeleton can alter the lifting movement in people without LBP. This study aims to investigate if wearing a novel lightweight exoskeleton that minimally supports the back, hip, and knee can alter the lifting range of motion and movement variations in people without LBP. This study also aims to investigate if wearing this novel exoskeleton can result in a reliable between-day lifting movement. In two separate sessions (each one week apart), fourteen participants lifted a box (that weighed 10% of their body weight) ten times, once while wearing an exoskeleton and once while not wearing an exoskeleton. Wearing the novel exoskeleton during lifting produced moderate-high, test-retest reliability (Trunk: ICC3,1 = 0.89, 95% CI [0.67, 0.96], SEM = 9.34°; Hip: ICC3,1 = 0.63, 95% CI [0.22, 0.88], SEM = 2.57°; Knee: ICC3,1 = 0.61, 95% CI [0.23, 0.87], SEM = 2.50°). Wearing an exoskeleton significantly decreased the range of motion of the knee (F1,4 = 4.83, p = 0.031, ηp2 = 0.06). Additionally, wearing an exoskeleton significantly decreased hip (diff = 8.38, p = 0.045) and knee (diff = −8.57, p = 0.038) movement variability; however, wearing an exoskeleton did not decrease the movement variability of the body’s trunk (diff = 0.60, p = 1.00). Therefore, minimally supported lifting through the use of exoskeletons can modify movement in people without LBP and produce reliable lifting movements. Wearing the novel exoskeleton is also desirable for monitoring lifting movements. Future studies should investigate the use of sensors and IMU to monitor lifting movement at work with the least amount of intrusion on an individual’s movement.

Publisher

MDPI AG

Reference51 articles.

1. GBD (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388, 1545–1602.

2. Early predictors of lumbar spine surgery after occupational back injury: Results from a prospective study of workers in Washington State;Keeney;Spine,2013

3. Motor variability in occupational health and performance;Srinivasan;Clin. Biomech.,2012

4. Acute repetitive lumbar syndrome: A multi-component insight into the disorder;Solomonow;J. Bodyw. Mov. Ther.,2012

5. Use of a functional movement screening tool to determine injury risk in female collegiate athletes;Chorba;N. Am. J. Sports Phys. Ther. NAJSPT,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3