Approach Distances of Scottish Golden Eagles Aquila chrysaetos to Wind Turbines According to Blade Motion Status, Wind Speed, and Preferred Habitat

Author:

Fielding Alan H.1,Anderson David2,Benn Stuart3,Taylor John4,Tingay Ruth5,Weston Ewan D.1,Whitfield D. Philip1ORCID

Affiliation:

1. Natural Research Ltd., Brathens AB31 4BY, UK

2. Dave Anderson Ecology Ltd., Callander FK17 8EU, UK

3. RSPB Scotland, Inverness IV2 3BW, UK

4. Forestry and Land Scotland, Lochgilphead PA31 8RS, UK

5. Wild Justice, 9 Lawson Street, Raunds NN9 6NG, UK

Abstract

Understanding drivers underlying birds’ responses to operational wind turbines is essential for robust wind farm proposal assessments, especially for large raptors with life history traits engendering sensitivity to impacts from two potential adverse effects: fatality through collision with rotating turbine blades and functional habitat loss through avoidance of turbines. The balance between these two potential effects represents opposing extremes on a continuum and is influenced by several factors. Collisions have an obvious impact on survival, but the impacts of avoidance may be more insidious and potentially more significant for a population. It is reasonable to conclude that collisions are less likely when blades are motionless. Consequently, turbine shutdown systems (TSSs, “shutdown on demand” or “curtailment”), instigated as raptors approach operational turbines, may provide mitigation against collisions. By contrast, if avoidance is most likely, this could be independent of blade motion, and TSSs/curtailment would provide no mitigation against habitat loss. For birds tending to wariness of turbines, therefore, it is important to understand if it is conditional on blade motion. Scottish golden eagles show a strong propensity to avoid (be wary of) turbines, subject largely to the suitability of habitat at and surrounding turbine locations. A previous Scottish study found that approach distances to turbines by non-territorial eagles were unaffected by blade motion but were closer at higher wind speed. Here, we analyse movement data from a GPS-tagged territorial eagle and non-territorial eagles responding to the motion status (and wind speed) of turbines at another Scottish wind farm. Eagles’ approach distances to turbines were only weakly affected by blade motion but were closer at higher wind speed. We again found that habitat suitability in and around turbine locations was strongly influential on eagles’ approach distance to turbines. Our confirmation that blade motion had little effect on Scottish golden eagles’ wariness of turbines suggests that for eagles that are prone to avoid turbines, their wariness is a response to turbines per se, and not blades’ movement. In our study system, and others where avoidance is the predominant response, curtailment of turbines’ operation on birds’ close approaches, or making turbine blades more obvious, should, therefore, have little material influence on functional habitat loss impacts. If true, this has important implications for wind farm designs and any proposed mitigation.

Funder

Natural Research, Ruth Tingay, SSE, the Royal Society for the Protection of Birds, Forestry and Land Scotland, and Roy Dennis Wildlife Foundation

Natural Research (NR) with assistance from Forest Enterprise Scotland

SSE under the Regional Eagle Conservation Management Plan research programme

Natural Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3