An Integrated Hydraulic and Hydrologic Modeling Approach for Roadside Bio-Retention Facilities

Author:

Li James,Alinaghian Seyed,Joksimovic DarkoORCID,Chen Lianghao

Abstract

Roadside bio-retention (RBR) facilities are low impact development practices, which control urban runoff primarily from road pavements. Using hydrologic models, such as the US EPA Storm Water Management Model (SWMM), RBR are typically designed with some fundamental assumptions, including where runoff completely enters the facilities and fully utilizes the whole surface area for percolation, detention, filtration, and infiltration to the surrounding soils. This paper highlights the importance of inlet hydraulics and the spatial distribution of inflow along a RBR, and proposes an integrated hydraulic and hydrologic modelling approach to simulate its overall runoff control performance. The integrated hydraulic/hydrologic modelling approach consists of three components: (1) A dual drainage hydrologic model to simulate runoff generation, runoff hydrographs entering and bypassing a storm inlet, and the outflow hydrograph from a fully utilized RBR; (2) a computational fluid dynamic model to determine the inflow distribution along a RBR; and (3) an overall runoff control performance analysis of RBR by considering the inlet efficiency, and the partially and fully utilized RBR during a storm event. A case study of an underground RBR in the City of Toronto was used to demonstrate the integrated modelling approach. It is concluded that; (1) inlet efficiency of a RBR will determine the overall runoff control performance; and (2) the inflow distribution will dictate the effective length of a RBR, which may affect the overall runoff control performance.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

1. Evaluation of Low Impact Development Stormwater Technologies for the Uncontrolled Urban Areas in the Lake Simcoe;Li,2010

2. Introduction to LID: Frequently Asked Questions. In LID Urban Design Toolshttp://www.lid-stormwater.net/index.html

3. Geometric Design Guide for Canadian Roads,2017

4. Improving stormwater quality at source using catch basin inserts

5. Characterising stormwater gross pollutants captured in catch basin inserts

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3