NCL1, A Highly Selective Lysine-Specific Demethylase 1 Inhibitor, Suppresses Castration-Resistant Prostate Cancer Growth via Regulation of Apoptosis and Autophagy

Author:

Etani Toshiki,Naiki Taku,Naiki-Ito Aya,Suzuki Takayoshi,Iida Keitaro,Nozaki Satoshi,Kato Hiroyuki,Nagayasu Yuko,Suzuki Shugo,Kawai Noriyasu,Yasui Takahiro,Takahashi SatoruORCID

Abstract

Recent studies have shown that epigenetic alterations lead to oncogenic activation, thus indicating that these are therapeutic targets. Herein, we analyzed the efficacy and therapeutic potential of our developed histone lysine demethylase 1 (LSD1) inhibitor, NCL1, in castration-resistant prostate cancer (CRPC). The CRPC cell lines 22Rv1, PC3, and PCai1CS were treated with NCL1, and LSD1 expression and cell viability were assessed. The epigenetic effects and mechanisms of NCL1 were also evaluated. CRPC cells showed strong LSD1 expression, and cell viability was decreased by NCL1 in a dose-dependent manner. Chromatin immunoprecipitation analysis indicated that NCL1 induced histone H3 lysine 9 dimethylation accumulation at promoters of P21. As shown by Western blot and flow cytometry analyses, NCL1 also dose-dependently induced caspase-dependent apoptosis. The stimulation of autophagy was observed in NCL1-treated 22Rv1 cells by transmission electron microscopy and LysoTracker analysis. Furthermore, WST-8 assay revealed that the anti-tumor effect of NCL1 was reinforced when autophagy was inhibited by chloroquine in 22Rv1 cells. Combination index analysis revealed that a concurrent use of these drugs had a synergistic effect. In ex vivo analysis, castrated nude mice were injected subcutaneously with PCai1 cells and intraperitoneally with NCL1. Tumor volume was found to be reduced with no adverse effects in NCL1-treated mice compared with controls. Finally, immunohistochemical analysis using consecutive human specimens in pre- and post-androgen deprivation therapy demonstrated that LSD1 expression levels in CRPC, including neuroendocrine differentiation cases, were very high, and identical to levels observed in previously examined prostate biopsy specimens. NCL1 effectively suppressed prostate cancer growth in vitro and ex vivo without adverse events via the regulation of apoptosis and autophagy, suggesting that NCL1 is a potential therapeutic agent for CRPC.

Funder

Grant-Aid from the Ministry of Education, Culture, Sports Science and Technology of Japan

Publisher

MDPI AG

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3