Drug Repurposing to Treat Glucocorticoid Resistance in Asthma

Author:

Wang Alberta L.,Panganiban RonaldORCID,Qiu Weiliang,Kho Alvin T.,Chupp Geoffrey,Meyers Deborah A.,Bleecker Eugene R.,Weiss Scott T.ORCID,Lu Quan,Tantisira Kelan G.

Abstract

Corticosteroid resistance causes significant morbidity in asthma, and drug repurposing may identify timely and cost-effective adjunctive treatments for corticosteroid resistance. In 95 subjects from the Childhood Asthma Management Program (CAMP) and 19 subjects from the Severe Asthma Research Program (SARP), corticosteroid response was measured by the change in percent predicted forced expiratory volume in one second (FEV1). In each cohort, differential gene expression analysis was performed comparing poor (resistant) responders, defined as those with zero to negative change in FEV1, to good responders, followed by Connectivity Map (CMap) analysis to identify inversely associated (i.e., negatively connected) drugs that reversed the gene expression profile of poor responders to resemble that of good responders. Mean connectivity scores weighted by sample size were calculated. The top five drug compound candidates underwent in vitro validation in NF-κB-based luciferase reporter A549 cells stimulated by IL-1β ± dexamethasone. In CAMP and SARP, 134 and 178 respective genes were differentially expressed in poor responders. CMap analysis identified 46 compounds in common across both cohorts with connectivity scores < −50. γ-linolenic acid, ampicillin, exemestane, brinzolamide, and INCA-6 were selected for functional validation. γ-linolenic acid, brinzolamide, and INCA-6 significantly reduced IL-1β induced luciferase activity and potentiated the anti-inflammatory effect of dexamethasone in A549/NF-κB-luc reporter cells. These results demonstrate how existing drugs, including γ-linolenic acid, brinzolamide, and INCA-6, may be repurposed to improve corticosteroid response in asthmatics.

Funder

National Institutes of Health

Thrasher Research Fund

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3