Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease

Author:

Martin Rebecca A.1ORCID,Fulk George2,Dibble Lee3ORCID,Boolani Ali4ORCID,Vieira Edgar R.5ORCID,Canbek Jennifer1

Affiliation:

1. Department of Physical Therapy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA

2. Department of Rehabilitation Science, Emory University, Atlanta, GA 30322, USA

3. Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84112, USA

4. Honors Program, Clarkson University, Potsdam, NY 13669, USA

5. Department of Physical Therapy, Florida International University, Miami, 33199 FL, USA

Abstract

Cues are commonly used to overcome the effects of motor symptoms associated with Parkinson’s disease. Little is known about the impact of cues on postural sway during transfers. The objective of this study was to identify if three different types of explicit cues provided during transfers of people with Parkinson’s disease results in postural sway more similar to healthy controls. This crossover study had 13 subjects in both the Parkinson’s and healthy control groups. All subjects completed three trials of uncued sit to stand transfers. The Parkinson’s group additionally completed three trials of sit to stand transfers in three conditions: external attentional focus of reaching to targets, external attentional focus of concurrent modeling, and explicit cue for internal attentional focus. Body worn sensors collected sway data, which was compared between groups with Mann Whitney U tests and between conditions with Friedman’s Tests. Sway normalized with modeling but was unchanged in the other conditions. Losses of balance presented with reaching towards targets and cueing for an internal attentional focus. Modeling during sit to stand of people with Parkinson’s disease may safely reduce sway more than other common cues.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3