Performance Evaluation of Novel Concentrating Photovoltaic Thermal Solar Collector under Quasi-Dynamic Conditions

Author:

Hosouli Sahand1ORCID,Gomes João12,Talha Jahangir Muhammad1ORCID,Pius George3

Affiliation:

1. MG Sustainable Engineering AB, 75340 Uppsala, Sweden

2. Faculty of Engineering and Sustainable Development, University of Gävle, 80176 Gävle, Sweden

3. Absolicon Solar Collector AB, 87133 Härnösand, Sweden

Abstract

Concentrating Photovoltaic Thermal (CPVT) collectors are suitable for integration in limited roof space due to their higher solar conversion efficiency. Solar sunlight can be used more effectively by CPVT collectors in comparison to individual solar thermal collectors or PV modules. In this study, the experimental investigation of a novel CPVT collector called a PC (power collector) has been carried out in real outdoor conditions, and the test set-up has been designed based on ISO 9806:2013. A quasi-dynamic testing method has been used because of the advantages that this method can offer for collectors with a unique construction, such as the proposed collector, over the steady-state testing method. With a quasi-dynamic testing method, it is possible to characterize the collector within a wide range of incidence angles and a complex incidence angle modifier profile. The proposed novel collector has a gross area of 2.57 m2. A maximum power output per collector unit area of 1140 W is found at 0 °C reduced temperature (1000 W/m2 irradiance level), while at a higher reduced temperature (70 °C), it drops down to 510 W for the same irradiance level. The data have been fitted through a multiple linear regression method, and the obtained efficiency curve coefficients are 0.39, 0.192, 1.294, 0.023, 0.2, 0, −5929 and 0 for Kθd, b0, c1, c2, c3, c4, c5 and c6, respectively. The experimental characterization carried out on the collector proved that the output powers calculated by using the obtained parameters of the quasi-dynamic testing method are in good agreement with experimental points.

Funder

RES4LIVE

Res4Build

PowerUpMyHouse

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3