Affiliation:
1. Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256601, China
2. Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
3. Department of Water Resources Engineering, Dalian University of Technology, Dalian 116024, China
Abstract
The hydrodynamic model, based on the strict conservation of momentum and continuity equations, can accurately simulate the distribution of a flow field. However, significant computing time and storage space requirements limit real-time prediction. Machine learning is well known for its fast computing speed and powerful learning ability, but its accuracy depends on an abundance of training data, hindering its wider use in locations without sufficient measurements. Application restrictions in data-deficient areas can be addressed through transfer learning, provided that two areas share common characteristics. In this study, a machine learning method based on a deep super-resolution convolutional neural network (DSRCNN) and transfer learning is proposed, validated, and applied to model two bend flows and one realistic test case. Firstly, the hydrodynamic model was established and validated against measured data. The validated model was considered to have the ability to generate real data and was used to generate a comprehensive data set for training and validating the machine learning model. Three different methods were compared and tested, with Realizable k-ε performing better than the others in predicting the outer bank flow distribution. DSRCNN was compared to a plain SRCNN (PSRCNN), as well as Bilinear, Nearest, and Bicubic methods, and the results showed that DSRCNN had the best performance. We compared Raw, RT, and TL methods, finding that the TL method performed the best overall. Therefore, the research results showed that the developed super-resolution convolutional neural network can provide more reliable predications and serve as an ideal tool for simulating flow field distribution in bends.
Funder
Open Research Fund Program of Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta
Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献