Understanding the Impact of Oxidative Stress on Ovarian Cancer: Advances in Diagnosis and Treatment

Author:

Meshkovska Yeva1,Abramov Artem2,Mahira Shaheen3,Thatikonda Sowjanya1ORCID

Affiliation:

1. Department of Clinical Sciences, Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA

2. Department of QC Microbiology, Eurofins Lancaster Laboratories Inc., Rensselaer, NY 12144, USA

3. Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract

Ovarian cancer (OC) ranks as the fifth most common cancer among women in the United States and globally, posing a significant health threat. Reactive oxygen species (ROS) have emerged as critical factors in the pathophysiology of this malignancy. ROS, characterized by their instability due to an unpaired electron, are involved in essential cellular functions and play a crucial role in the immune response under normal physiological conditions. However, an imbalance in ROS homeostasis, leading to excessive ROS production, results in oxidative stress (OS), which can cause indiscriminate damage to cellular structures and contribute to the pathogenesis of specific diseases, including OC. OC is primarily classified based on the originating cell type into epithelial, stromal, and germinal tumors, with epithelial tumors being the most prevalent. Despite advancements in medical technology, early detection of OC remains challenging, often leading to delayed treatment initiation. Current therapeutic approaches include surgical excision of tumor tissue, radiotherapy, and chemotherapy. While these treatments are effective in early-stage OC, high mortality rates and frequent relapse underscore the urgent need for novel diagnostic and therapeutic strategies. This review aims to elucidate the role of ROS in OC, emphasizing the potential for developing innovative diagnostic tools and treatments that target ROS-mediated pathways. Given the critical impact of early detection and effective treatment, advancing our understanding of ROS in the context of OC could significantly enhance patient outcomes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3