Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions

Author:

Bodmer Timo1,Hartmann Steffen F.2,Keck Cornelia M.2,Kleiner Martina1,Köhler Karsten1ORCID

Affiliation:

1. Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany

2. Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany

Abstract

Curcumin is a biopharmaceutical classification system (BCS) class IV substance with many potential therapeutic effects. However, like many other BCS IV active pharmaceutical ingredients, complex formulations are needed to guarantee a sufficiently high bioavailability. A not-so-well-known delivery system is a suspoemulsion (SE). SEs are emulsions with a crystalline API in continuous or dispersed phases. This study aimed to produce curcumin-loaded o/w suspoemulsions with the particle in the oil phase for, e.g., encapsulation or triggered release effects. The particles need to be smaller than the emulsion droplet size to attain high encapsulation efficiencies (EE) in the oil phase. Sonofragmentation and bead milling were tested for their ability to produce these nanocrystals in different dispersion media. It was discovered that production in miglyol was the best fit for the needed application of the crystals in SEs. Around 85% (by volume) of the particles produced with bead milling were smaller than the droplet size of about 5 µm. In contrast, only 23% of the sonofragmentated particles were below the diameter of those droplets. This oily suspension was then used to successfully produce hydrogel-based o/w suspoemulsions. In the second part of this study, we investigated different methods for determining encapsulation efficiency, but none of the methods accurately and satisfactorily resolved the encapsulation efficiency. Finally, the suspoemulsions could not be macroscopically distinguished from one another and were physically stable. In summary, we showed that stable hydrogel-based curcumin-loaded o/w suspoemulsions could be produced.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3