Tracking the 2D/3D Morphological Changes of Tidal Flats Using Time Series Remote Sensing Data in Northern China

Author:

Gan Zhiquan1,Guo Shurong1,Chen Chunpeng23ORCID,Zheng Hanjie1,Hu Yuekai2,Su Hua1ORCID,Wu Wenting12

Affiliation:

1. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, National & Local Joint Engineering Research Center of Satellite Geospatial Information Technology, Fuzhou University, Fuzhou 350108, China

2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200050, China

3. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

Abstract

Tidal flats in northern China are essential parts of the East Asian-Australasian Flyway, the densest pathway for migratory waterbirds, and are of great ecological and economic importance. They are threatened by human activities and climate change, raising the urgency surrounding tracking the spatiotemporal dynamics of tidal flats. However, there is no cost-effective way to map morphological changes on a large spatial scale due to the inaccessibility of the mudflats. In this study, we proposed a pixel-based multi-indices tidal flat mapping algorithm that precisely characterizes 2D/3D morphological changes in tidal flats in northern China using time-series remote sensing data. An overall accuracy of 0.95 in delineating tidal flats to a 2D extent was achieved, with 11,716 verification points. Our results demonstrate that the reduction in sediment discharge from rivers along the coastlines of the Yellow and Bohai Seas has resulted in an overall decline in the area of tidal flats, from 4856.40 km2 to 4778.32 km2. Specifically, 3D analysis showed that significant losses were observed in the mid-to-high-tidal flat zones, while low-elevation tidal flats experienced an increase in area due to the transformations in mid-to-high-tidal flats. Our results indicate that the sediment inputs from rivers and the succession of native vegetation are the primary drivers leading to 2D/3D morphological changes of tidal flats following the cessation of extensive land reclamation in northern China.

Funder

National Natural Science Foundation of China

State Key Laboratory of Estuarine and Coastal Research

Natural Science Foundation of Fujian Province

Education Department of Fujian Province

the Natural Science Foundation for Distinguished Young Scholars of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3