Remote Sensing Observations of a Coastal Water Environment Based on Neural Network and Spatiotemporal Fusion Technology: A Case Study of Hangzhou Bay

Author:

Tang Rugang1,Wei Xiaodao2,Chen Chao3ORCID,Jiang Rong1,Shen Fang4ORCID

Affiliation:

1. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China

2. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200050, China

3. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

4. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

Abstract

The coastal environment is characterized by high, multi-scale dynamics and the corresponding observations from a single remote sensing sensor are still facing challenges in achieving both high temporal and spatial resolution. This study proposed a spatiotemporal fusion model for coastal environments, which could fully enhance the efficiency of remote sensing data use and overcome the shortcomings of traditional spatiotemporal models that are insensitive to small-scale disturbances. The Enhanced Deep Super-Resolution Network (EDSR) was used to reconstruct spatial features in the lower spatial resolution GOCI-II data. The spatial features obtained instead of GOCI-II data were fed into the spatiotemporal fusion model, which enabled the fusion data to achieve an hour-by-hour observation of the water color and morphology information changes at 30 m resolution, including the changes in the spatial and temporal distributions of suspended particulate matter (SPM), the characterization of the vortex street caused by the bridge piers, the inundation process of the tidal flats, and coastline changes. In addition, this study analyzed the various factors affecting fusion accuracy, including spectral difference, errors in both temporal difference and location distance, and the structure of the EDSR model on the fusion accuracy. It is demonstrated that the location distance error and the spectral difference have the most significant impact on the fusion data, which may lead to the introduction of some ambiguous or erroneous spatial features.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang

Research Project of China Three Gorges Corporation

Shanghai Investigation, Design & Research Institute Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3