Optimizing the Deployment of Ground Tracking Stations for Low Earth Orbit Satellite Constellations Based on Evolutionary Algorithms

Author:

Kralfallah Mansour1,Wu Falin1ORCID,Tahir Afnan12ORCID,Oubara Amel1,Sui Xiaohong3

Affiliation:

1. SNARS Laboratory, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

2. Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), SUPARCO Rd, P.O. Box 8402, Karachi 75270, Pakistan

3. Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100094, China

Abstract

Low Earth orbit (LEO) satellite constellations have emerged as an effective alternative for the provision of high-accuracy positioning, navigation and timing (PNT) solutions which are based on high-precision orbit and clock information. Determining an orbit with high precision is dependent on the number and distribution of ground tracking stations. Therefore, it is important to investigate methodologies that can ensure the adequate observing coverage of LEO navigation constellations. In this study, an evolutionary algorithm is applied to optimize the number and deployment of ground stations for tracking LEO constellations. According to the distribution area, two schemes of study are analyzed: (a) global deployment—the ground stations are deployed throughout the globe; (b) regional deployment—a selected region is used for deployment. For global deployment, the optimization objectives are focused on the ground station and observing rate for k-heavy observing coverage (HC), while the sole objective for the regional deployment scheme is the satellite position dilution of precision (SPDOP). It is shown that a deployment of 95 ground stations is optimal for achieving 3-HC with an observing rate of 97.37% and 4-HC with an observing rate of 92.01%. For regional distribution, 15, 20 and 25 ground stations are used for three optimal configurations of SPDOP at 2.058, 1.399 and 1.330, respectively. The results are significantly enhanced using intersatellite links for SPDOP evaluation, from 2.058, 1.399 and 1.330 to 0.439, 0.422 and 0.409, with 15, 20 and 25 ground stations, respectively.

Funder

Beihang University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3