Multiobjective Evolutionary Superpixel Segmentation for PolSAR Image Classification

Author:

Chu Boce12ORCID,Zhang Mengxuan3ORCID,Ma Kun3,Liu Long4,Wan Junwei5,Chen Jinyong2,Chen Jie1,Zeng Hongcheng1

Affiliation:

1. School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

2. 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

3. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an 710071, China

4. School of Engineering, Xidian University, Xi’an 710071, China

5. Beijing Institute of Remote Sensing Information, Beijing 100192, China

Abstract

Superpixel segmentation has been widely used in the field of computer vision. The generations of PolSAR superpixels have also been widely studied for their feasibility and high efficiency. The initial numbers of PolSAR superpixels are usually designed manually by experience, which has a significant impact on the final performance of superpixel segmentation and the subsequent interpretation tasks. Additionally, the effective information of PolSAR superpixels is not fully analyzed and utilized in the generation process. Regarding these issues, a multiobjective evolutionary superpixel segmentation for PolSAR image classification is proposed in this study. It contains two layers, an automatic optimization layer and a fine segmentation layer. Fully considering the similarity information within the superpixels and the difference information among the superpixels simultaneously, the automatic optimization layer can determine the suitable number of superpixels automatically by the multiobjective optimization for PolSAR superpixel segmentation. Considering the difficulty of the search for accurate boundaries of complex ground objects in PolSAR images, the fine segmentation layer can further improve the qualities of superpixels by fully using the boundary information of good-quality superpixels in the evolution process for generating PolSAR superpixels. The experiments on different PolSAR image datasets validate that the proposed approach can automatically generate high-quality superpixels without any prior information.

Funder

Beijing Institute of Remote Sensing Information

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3