Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance

Author:

Deng Jiawen123ORCID,Huang Lijia12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Synthetic Aperture Radar (SAR) images are widely utilized in the field of remote sensing. However, there is a limited body of literature specifically addressing the compression of SAR learning images. To address the escalating volume of SAR image data for storage and transmission, which necessitates more effective compression algorithms, this paper proposes a novel framework for compressing SAR images. Experimental validation is performed using a representative low-resolution Sentinel-1 dataset and the high-resolution QiLu-1 dataset. Initially, we introduce a novel two-stage transformation-based approach aimed at suppressing the low-frequency components of the input data, thereby achieving a high information entropy and minimizing quantization losses. Subsequently, a quality map guidance image compression algorithm is introduced, involving the fusion of the input SAR images with a target-aware map. This fusion involves convolutional transformations to generate a compact latent representation, effectively exploring redundancies between focused and non-focused areas. To assess the algorithm’s performance, experiments are carried out on both the low-resolution Sentinel-1 dataset and the high-resolution QiLu-1 dataset. The results indicate that the low-frequency suppression algorithm significantly outperforms traditional processing algorithms by 3–8 dB when quantifying the input data, effectively preserving image features and improving image performance metrics. Furthermore, the quality map guidance image compression algorithm demonstrates a superior performance compared to the baseline model.

Funder

Youth Innovation Promotion Association

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3