Accounting for Geometric Anisotropy in Sparse Magnetic Data Using a Modified Interpolation Algorithm

Author:

Li Haibin1,Zhang Qi1,Pan Mengchun1,Chen Dixiang1,Liu Zhongyan1,Yan Liang2ORCID,Xu Yujing1,Ding Zengquan1,Yu Ziqiang1,Liu Xu1ORCID,Wan Ke1,Dai Weiji1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Center for Applied Mathematics, College of Science, National University of Defense Technology, Changsha 410073, China

Abstract

The construction of a high-precision geomagnetic map is a prerequisite for geomagnetic navigation and magnetic target-detection technology. The Kriging interpolation algorithm makes use of the variogram to perform linear unbiased and optimal estimation of unknown sample points. It has strong spatial autocorrelation and is one of the important methods for geomagnetic map construction. However, in a region with a complex geomagnetic field, the sparse geomagnetic survey lines make the ratio of line-spacing resolution to in-line resolution larger, and the survey line direction differs from the geomagnetic trend, which leads to a serious effect of geometric anisotropy and thus, reduces the interpolation accuracy of the geomagnetic maps. Therefore, this paper focuses on the problem of geometric anisotropy in the process of constructing a geomagnetic map with sparse data, analyzes the influence of sparse data on geometric anisotropy, deduces the formula of geometric anisotropy correction, and proposes a modified interpolation algorithm accounting for geometric anisotropy correction of variogram for sparse geomagnetic data. The results of several sets of simulations and measured data show that the proposed method has higher interpolation accuracy than the conventional spherical variogram model in a region where the geomagnetic anomaly gradient changes sharply, which provides an effective way to build a high-precision magnetic map of the complex geomagnetic field under the condition of sparse survey lines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference19 articles.

1. Bobrowsky, P.T., and Marker, B. (2018). Encyclopedia of Engineering Geology, Springer.

2. Colin, R. (2024, January 10). Aeromagnetic Surveys: Principles, Practice and Interpretation|Sebas Sanguil—Academia.Edu. Available online: https://www.academia.edu/16883197/Aeromagnetic_Surveys_Principles_Practice_and_Interpretation.

3. Aeromagnetic Survey Design;Reid;Geophysics,1980

4. (2021). Technical Specification for Aerial Magnetic Survey of UAV (Standard No. DB63/T 1933-2021). (In Chinese).

5. (1994). Technical Specification for Airborne Magnetic Survey (Standard No. DZ-T-0142-1994). (In Chinese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3