Numerical Evaluation of Planetary Radar Backscatter Models for Self-Affine Fractal Surfaces

Author:

Virkki Anne12ORCID

Affiliation:

1. Department of Physics, University of Helsinki, Gustaf Hällströminkatu 2, 00560 Helsinki, Finland

2. Finnish Geospatial Research Institute, National Land Survey, Vuorimiehentie 5, 02150 Espoo, Finland

Abstract

Numerous analytical radar-scattering laws have been published through the past decades to interpret planetary radar observations, such as Hagfors’ law, which has been commonly used for the Moon, and the cosine law, which is commonly used in the shape modeling of asteroids. Many of the laws have not been numerically validated in terms of their interpretation and limitations. This paper evaluates radar-scattering laws for self-affine fractal surfaces using a numerical approach. Traditionally, the autocorrelation function and, more recently, the Hurst exponent, which describes the self-affinity, have been used to quantify the height correlation. Here, hundreds of three-dimensional synthetic surfaces parameterized using a root-mean-square (rms) height and a Hurst exponent were generated, and their backscattering coefficient functions were computed to evaluate their consistency with selected analytical models. The numerical results were also compared to empirical models for roughness and radar-scattering measurements of Hawaii lava flows and found consistent. The Gaussian law performed best at predicting the rms slope regardless of the Hurst exponent. Consistent with the literature, it was found to be the most reliable radar-scattering law for the inverse modeling of the rms slopes and the Fresnel reflection coefficient from the quasi-specular backscattering peak, when homogeneous statistical properties and a ray-optics approach can be assumed. The contribution of multiple scattering in the backscattered power increases as a function of rms slope up to about 20% of the backscattered power at normal incidence when the rms slope angle is 46°.

Funder

Academy (Research Council) of Finland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3