Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain

Author:

Wang Yuyi12,Chen Xi12ORCID,Wang Zhe34,Gao Man12,Wang Lichun12

Affiliation:

1. Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

2. Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China

3. Haihe River Water Conservancy Commission, The Ministry of Water Resources, Tianjin 300170, China

4. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, China

Abstract

Controlling groundwater table decline could mitigate land subsidence and induced environmental hazards in over-explored areas. Nevertheless, this becomes a challenge in the multi-layered porous system as (in)elastic deformation simultaneously occurs due to vast spatiotemporal variability in the groundwater table. In this study, SBAS-InSAR was used to estimate annual land deformation during 2017–2022 in a specific region of North China Plain, in which aquifers are composed of many layers of fine-grained compressible sediments and the groundwater table has experienced a prolonged decline. The random forest (RF) was applied to establish the nonlinear relationship between accumulated deformation and its potential driving factors, including the depth to the groundwater table (GWD) and its change rate, and the compressible sediment thickness. Results show that the marked subsidence and uplift co-exist in the region even though the groundwater table has risen widely since the South–North Water Diversion Project. The land subsidence is attributed to inelastic compaction of the thick compressible deposits in depression cone centers, where the GWD is over 40 m and 90 m in the shallow and deep aquifers, respectively. In contrast, the marked uplift is primarily attributed to fast rising of the groundwater table (e.g., −2.44 m/a). The RF predictions suggest that, to control the subsidence, the GWD should be less than 20 and 70 m in the shallow and deep aquifers, respectively, and the rising rate of the GWD should increase to 2–5 times of current rates in the depression cones. To mitigate the marked uplift, the rising rate of the GWD should reduce to 1/2–1/5 of the current rates in the shallow aquifers. The uneven deformations of sediments in the depression cone centers and uplift in their boundaries may exacerbate geohazards. Therefore, it is vital to implement appropriate governance of groundwater recovery in the multi-layered porous system.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects of the Ministry of Water Resources of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3