Hydrologic Consistency of Multi-Sensor Drought Observations in Forested Environments

Author:

Andreadis Konstantinos M.1ORCID,Meason Dean2,Corbett-Lad Priscilla2,Höck Barbara3ORCID,Das Narendra45

Affiliation:

1. Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01375, USA

2. Scion, Christchurch 8011, New Zealand

3. Candleford Ltd., Southampton PO15 7AG, UK

4. Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA

5. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

Drought can have significant impacts on forests, with long periods of water scarcity leading to water stress in trees and possible damages to their eco-physiological functions. Satellite-based remote sensing offers a valuable tool for monitoring and assessing drought conditions over large and remote forested regions. The objective of this study is to evaluate the hydrological consistency in the context of drought of precipitation, soil moisture, evapotranspiration, and land surface temperature observations against in situ measurements in a number of well-monitored sites in New Zealand. Results showed that drought indicators were better captured from soil moisture observations compared to precipitation satellite observations. Nevertheless, we found statistically significant causality relationships between the multi-sensor satellite observations (median p-values ranging from 0.001 to 0.019), with spatial resolution appearing to be an important aspect for the adequate estimation of drought characteristics. Understanding the limitations and capabilities of satellite observations is crucial for improving the accuracy of forest drought monitoring, which, in turn, will aid in sustainable forest management and the development of mitigation and adaptation strategies in the face of changing climate conditions.

Funder

Ministry of Business, Innovation and Employment of New Zealand Endeavour Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3