Affiliation:
1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Abstract
Deep learning has dramatically enhanced remote sensing change detection. However, existing neural network models often face challenges like false positives and missed detections due to factors like lighting changes, scale differences, and noise interruptions. Additionally, change detection results often fail to capture target contours accurately. To address these issues, we propose a novel transformer-based hybrid network. In this study, we analyze the structural relationship in bi-temporal images and introduce a cross-attention-based transformer to model this relationship. First, we use a tokenizer to express the high-level features of the bi-temporal image into several semantic tokens. Then, we use a dual temporal transformer (DTT) encoder to capture dense spatiotemporal contextual relationships among the tokens. The features extracted at the coarse scale are refined into finer details through the DTT decoder. Concurrently, we input the backbone’s low-level features into a contour-guided graph interaction module (CGIM) that utilizes joint attention to capture semantic relationships between object regions and the contour. Then, we use the feature pyramid decoder to integrate the multi-scale outputs of the CGIM. The convolutional block attention modules (CBAMs) employ channel and spatial attention to reweight feature maps. Finally, the classifier discriminates change pixels and generates the final change map of the difference feature map. Several experiments have demonstrated that our model shows significant advantages over other methods in terms of efficiency, accuracy, and visual effects.
Funder
High-Resolution Remote Sensing Application Demonstration System for Urban Fine Management
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献