A Lightweight Remote Sensing Aircraft Object Detection Network Based on Improved YOLOv5n

Author:

Wang Jiale12,Bai Zhe1,Zhang Ximing1,Qiu Yuehong1

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Due to the issues of remote sensing object detection algorithms based on deep learning, such as a high number of network parameters, large model size, and high computational requirements, it is challenging to deploy them on small mobile devices. This paper proposes an extremely lightweight remote sensing aircraft object detection network based on the improved YOLOv5n. This network combines Shufflenet v2 and YOLOv5n, significantly reducing the network size while ensuring high detection accuracy. It substitutes the original CIoU and convolution with EIoU and deformable convolution, optimizing for the small-scale characteristics of aircraft objects and further accelerating convergence and improving regression accuracy. Additionally, a coordinate attention (CA) mechanism is introduced at the end of the backbone to focus on orientation perception and positional information. We conducted a series of experiments, comparing our method with networks like GhostNet, PP-LCNet, MobileNetV3, and MobileNetV3s, and performed detailed ablation studies. The experimental results on the Mar20 public dataset indicate that, compared to the original YOLOv5n network, our lightweight network has only about one-fifth of its parameter count, with only a slight decrease of 2.7% in mAP@0.5. At the same time, compared with other lightweight networks of the same magnitude, our network achieves an effective balance between detection accuracy and resource consumption such as memory and computing power, providing a novel solution for the implementation and hardware deployment of lightweight remote sensing object detection networks.

Funder

national defense foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3