VOC Detections by p-Type Semiconducting Sensors Using Nano-Sized SmFeO3 Particles

Author:

Mori Masami,Noguchi Ayumu,Itagaki Yoshiteru

Abstract

Nano-sized SmFeO3 particles are prepared by the pyrolysis of heteronuclear cyano-complex, Sm[Fe(CN)6]·4H2O at a temperature of 600 °C in ozone. The low temperature decomposition followed in ozone successfully yielded fine particles with a high specific surface area of 20.0 m3/g (sample A). The fine particles were classified into further smaller particles with a unimodal size distribution and this process yielded a high specific surface area of 26.0 m3/g (sample B). These semiconducting powders were deposited on a sensor electrode by electrophoretic deposition (EPD) and tested on their sensing properties to VOCs. The sensors consisting of samples A and B both showed good responses to ethanol at 285 and 320 °C. The sensor with sample B showed extraordinarily good selectivity of ethanol for toluene at 320 °C. This could be because the detection film of sample B with moderately grown particles selectively reduced the reaction activity of toluene. The sensor with sample B also exhibited good selectivity of ethanol for hexane and dichloromethane.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3