Ecological Response of Enzyme Activities in Watershed Sediments to the Reintroduction of Antibiotics

Author:

Lu Yue123,Chen Yongshan24ORCID,Xu Jinghua24,Feng Ying24,Jiang Jinping13

Affiliation:

1. Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China

2. Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou 362000, China

3. Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China

4. School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China

Abstract

The impact of antibiotic residue on sediment ecology at the watershed level is not yet fully understood. In this investigation, varying concentrations of oxytetracycline (OTC) and sulfadiazine (SD) were added to the overlying water of both the upper (0–10 cm) and bottom sediment (20–30 cm) layers at the watershed scale to evaluate the ecological impact on sediment habitats through the analysis of the activities of enzymes, namely urease (UA), alkaline phosphatase (APA), peroxidase (POA), and dehydrogenase (DHA). Results showed that the levels of UA and APA in the bottom sediment layers exceeded those in the top sediment layer upon reintroduction of antibiotics. Conversely, the fluctuations in DHA were notably reduced across various types of antibiotics and exposure concentrations in the bottom sediment layers. Within the top sediment layers, as the concentration of OTC exposure increased, there was a corresponding elevation in POA levels. However, the response of POA initially ascended and subsequently descended with rising SD exposure concentration, although it consistently exceeded the control levels. In contrast, the response of DHA displayed an inverse correlation with OTC exposure concentration but a direct correlation with SD exposure concentration. At the watershed scale, under antibiotic exposure, UA and DHA exhibited significantly higher levels upstream compared to downstream. Conversely, APA and POA appeared relatively stable across the watershed following the reintroduction of antibiotics. Moreover, DHA demonstrated a noticeable decreasing trend with increasing concentrations of OTC exposure. Environmental factors had a predominant influence, exceeding 40%, on enzyme activities during antibiotic reintroduction. Specifically, particle size significantly inhibited enzyme activity, while sediment nutrient conditions, including total carbon, nitrogen, and sulfur content, significantly enhanced enzyme activities. The study suggests that enzyme activities associated with antibiotic reintroduction in watershed sediments are established during stable stages in the bottom sediment layer or downstream sediment environment as part of sedimentary and transport processes. More research is required to explore the maintenance and evolution of antibiotic resistance profiles in the presence of long-term antibiotic residues.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3