An Accurate Method for Computing the Delay Margin in Load Frequency Control System with Gain and Phase Margins

Author:

Khalil AshrafORCID,Laila Dina Shona

Abstract

In traditional power systems, a dedicated communication channel is utilized to transfer the frequency measurements. With the deregulation and reconstruction of power systems, the information is sent through a shared communication network that makes time delays unavoidable in load frequency control (LFC) systems. With the existence of time delays, the LFC system becomes a standard time delay system that complicates the stability analysis and controller synthesis. In this paper, we present a new approach for analyzing the stability and determining the delay margin of the LFC system. By introducing a new variable, the transcendental equation is converted to nonlinear equations. To find the crossing frequencies, the nonlinear equations are solved, which is simpler than solving a set of linear matrix inequalities. A single-area and a multi-area LFC system are selected as case studies. The new method accurately determines the delay margin of the LFC system with phase and gain margin. The effect of the PI controller gains on the delay margin is also considered. A sensitivity analysis is conducted to discover the effects of the system parameters on the delay margin, and it is found that the primary loop parameters have a powerful influence on the delay margin. The stability region of the LFC system is also clearly identified through the proposed method. The influence of the system parameters on the stability region is studied. Compared to the published methods in the literature, the proposed method has a simpler structure while giving more accurate results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3