Optimal Well Control Based on Auto-Adaptive Decision Tree—Maximizing Energy Efficiency in High-Nitrogen Underground Gas Storage

Author:

Kuk EdytaORCID,Stopa JerzyORCID,Kuk MichałORCID,Janiga DamianORCID,Wojnarowski PawełORCID

Abstract

To move the world toward a more sustainable energy future, it is crucial to use the limited hydrocarbon geological resources efficiently and to develop technologies that facilitate this. More rational management of petroleum reservoirs and underground gas storage can be obtained by optimizing well control. This paper presents a novel approach to optimal well control based on the combination of optimal control theory, innovative artificial intelligence methods, and numerical reservoir simulations. In the developed algorithm, well control is based on an auto-adaptive parameterized decision tree. Its parameters are optimized by state-of-the-art machine learning, which uses previous results to determine favorable parameters. During optimization, a numerical reservoir simulator is applied to compute the objective function. The developed solution enables full automation of the wells for optimal control. An exemplary application of the developed solution to optimize underground storage of gas with high nitrogen content confirmed its effectiveness. The total nitrogen content in the gas decreased by 2.4%, increasing energy efficiency without increasing expense, as only well control was modified.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. Poradnik Inzyniera: Automatyka;Findeisen,1973

2. Metody Sztucznej Inteligencji i ich Zastosowania w Ekonomii i Zarządzaniu;Lula,2007

3. Process control and artificial intelligence software for aquaculture;Phillip;Aquac. Eng.,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3