Application of IIA Method and Virtual Bus Theory for Backup Protection of a Zone Using PMU Data in a WAMPAC System

Author:

Prada Hurtado Aníbal AntonioORCID,Martinez Carrasco Eduardo,Villén Martínez Maria Teresa,Saldana JoseORCID

Abstract

Many wide area monitoring, protection, and control (WAMPAC) systems are being deployed by grid operators to deal with critical operational conditions that may occur in power systems. Thanks to the real-time measurements provided by a set of distributed phasor measurement units (PMUs), different protection algorithms can be run in a central location. In this context, this article presents and validates a novel method that can be used as a backup protection for a selected area in a power system. It merges the integrated impedance angle (IIA) protection method with the theory of virtual buses in wide area electrical power systems. The backup protection works this way: once a fault is detected (pickup time), another delay (added to the pickup time) is defined in order to wait for the primary protection to act. If this does not happen, the algorithm generates its backup trip. The proposed method has been called the zone integrated impedance angle (Zone IIA). A real-time PMU laboratory has been used to test the proposed algorithm using a real-time digital simulator (RTDS). The algorithm has been programmed in a real-time automation controller (RTAC). It has been tested in two different simulated setups: first, a 400 kV transmission system, with and without the use of renewable energy sources (RES); second, a 150 kV submarine line between the Greece mainland and an island, which is currently the longest submarine alternating current connection in the world. The results obtained during the tests have yielded tripping times for area protection in the order of 48 ms, if no time delay is used between the fault detection and the trip order. According to the test results, the proposed method is stable, reliable, obedient, and secure, also with RES installed in the power system. Additionally, the method is selective, i.e., during the tests no trip was executed for external faults, no trip was executed in no-fault condition, and all the applied internal faults were detected and tripped correctly. Finally, the protection method is easy to implement. The method is also applicable to protection against short circuits in distribution systems. According to the trip times observed during the tests, it is clear that these algorithms are well suited to implement backup protections in transmission grids, even in scenarios with high penetration of renewable energies. Considering that backup trip times in transmission grids are usually set between 400 and 1000 ms, and that the actuation times obtained by the proposed algorithm are under 100 ms, the method is suitable for its use as a backup protection.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3