Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass

Author:

Lebendig FlorianORCID,Funcia IbaiORCID,Pérez-Vega RáulORCID,Müller MichaelORCID

Abstract

Biomass chemical looping gasification (BCLG) is a promising autothermic route for producing sustainable, N2-free, and carbon neutral syngas for producing liquid biofuels or high value hydrocarbons. However, different ash-related issues, such as high-temperature corrosion, fouling and slagging, bed agglomeration, or poisoning of the oxygen carrier might cause significant ecologic and economic challenges for reliable implementation of BCLG. In this work, lab-scale investigations under gasification-like conditions at 950 °C and thermodynamic modelling were combined for assessing the influence of composition, pre-treatment methods, such as torrefaction and water-leaching, and Ca-based additives on the release and fate of volatile inorganics, as well as on ash melting behavior. A deep characterization of both (non-)condensable gas species and ash composition behavior, joint with thermodynamic modelling has shown that different pre-treatment methods and/or Ca-additives can significantly counteract the above-mentioned problems. It can be concluded that torrefaction alone is not suitable to obtain the desired effects in terms of ash melting behavior or release of problematic volatile species. However, very promising results were achieved when torrefied or water-leached wheat straw was blended with 2 wt% CaCO3, since ash melting behavior was improved up to a similar level than woody biomass. Generally, both torrefaction and water-leaching reduced the amount of chlorine significantly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3